WiP: Towards a Secure SECP256K1 for Crypto Wallets:

Hardware Architecture and Implementation

Joel Poncha Lemayian, Ghyslain Gagnon, Kaiwen Zhang, and Pascal Giard

Laboratoire de Communications et d'Intégration de la MicroElectronique (LaCIME),
Ecole de technologie supérieure (ETS)

November 2™ 2024

ECcime



Introduction Background Motivation Objective Contribution Results Conclusion

Outline

e Background

e Motivation

Objectives

Contributions

Results

Conclusion

AN\

£FS 114 =CcIme




Introduction Background Motivation Objective Contribution Results Conclusion

Blockchain Technology

ludoa

1“’g“ BLOCKCHAIN
ledgel

Decentralized shared Iedger of transactions

Y
2/14 cime




Introduction Background Motivation Objective Contribution Results Conclusion

Blockchain Technology

lLd"Lr

Applications: Supply chain management,

Internet of things,
Cryptocurrency (Crypto)
lodgLr
BLOCKCHAIN -
ledgel

Decentralized shared Iedger of transactions
P
2/14 cime




Introduction Background Motivation Objective Contribution Results Conclusion

Blockchain Technology
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Blockchain Technology

Crypto key provide ownership of digital assets.

BLOCKCHAIN There are public and private keys.
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Blockchain Technology
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Crypto wallets store crypto keys.
Cold wallets are often small and portable
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Various attacks targeted Elliptic curve cryptography (ECC) algorithm.
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SECP256K1

SECP256K1
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Elliptic curve point addition (ECPA) Elliptic curve point doubling (ECPD)  Elliptic curve point multiplication (ECPM)
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Key vulnerability in Montgomery ladder ECPM

Algorithm 1 Montgomery Ladder

Input: P € (z,y,2),m = (m4—1,...,mo) with my_1 =1
Output: R=mP
Initialisation:
1: Ro+ P
2: Ry «+ 2P
Loop Process:

. fon = ¥ 95 il do Power consumption pattern and

3

1 iF g =1 then execution time discrepancy

5: Ry <~ Ry + R3 . I

6. Ry < 2R, ]— Private key bit =1

7 else

8: R+ Ry+ Ry . [T

.. Ro < 2R ]— Private key bit =0

10: end if

11: end for

12: return Ro P
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Objectives

® To secure SECP256K1 against side-channel analysis (SCA) attack.
m Complete addition equation
m Temporary registers
m Parallel operations

® To minimize resources utilized by SECP256K1.

m Efficiently reusing modules
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Use equations to perform ECPA

Algorithm 2 Equations for complete, projective point addition for SECP256K1

Input: P = (X1,Y1,71),Q = (X2,Y2,Z2) on E:Y?Z = X* +bZ% and by = 3 - b.

Output: (X3,Y3,7Z3) = P+ Q;
1: to+— X1 - X2 12: X3 < t1 + to 23: 1 < t1 — 1o
201+ Y1 -Ys 13: tg < tg — X3 24: Y3 %b;gY},
3: tz(*Zl -Zz 14: X3 (~X1+Zl 25: Xg(*t4'1/3
4: 13+ X1+ Y1 15: Y3+ Xo + Zs 26: to < t3 -t
5. ta+ Xo+ Yo 16: X34 X3-Y3 27: X3 <4 to — X3
6: t3 <tz 14 17: Y3 < to + to 28: Y3 < Y3 -tg
Tty < to+ 1 18: Y3+ X3 —Y3 29: t1 < t1 -3
8 t3 4tz —14 19: X3 < to + to 30: Y3 <t + Y3
9 ta <Y1+ 71 20: to + X3+ to 31: tg < to-ts
10: X3 < Y2 + 22 21: tg b3 - 1o 32: Z3 $— Z3 < tg
11: t4(~t4-X3 22: Z3 —t1+ta 33: Z3(~Z3+t0

Avoid the branching caused by SECP256K1 EC addition operation

Y
E=cime
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Use temporary registers in ECPM

Algorithm 3 Montgomery Ladder Algorithm with Temporary Registers
Input: P € (2,y,2),m = (m¢_1,...,mo) with ms_1 =1
Output: R=mP
Initialisation:
1: Ro+ P
2: Ry < 2P
Loop Process:

3: fori=t—2to0do

4 if m; = 1 then

5: Ro < Ro+ R1

6: Ri < 2R: Private key bit =1
7 R: < 2Ro

8 else

9: R+ Ro+ R:1 . o
1o Ro  2Rg :l- Private key bit =0
11: Ri + 2Ry

12: end if

13: end for

14: return Ro

Both branches perform addition and doubling of the same registers
STC P o
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Use parallel operation in hardware implementation

P ECPA

2 — BIA

@ ECPM done in projective coordinates.
® Binary inversion done at the end.

® ECPA is done with two modules in
parallel.

O Registers reused to achieve minimum
area.
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SECP256K1 implementation results

Work Platform Area Frequency Latency Throughput?
kLUT DSP RAM (kbits) Registers (MHz) (ms) (kCC) (kbps)
This work Zynq-US 21 0 0 13881 250 7.58 1895 34
This work Artix-7 24 0 0 13385 90 21 1895 12
Mehrabi et al.[1] Virtex-7 47 560 0 29742 125 0.25 N/A N/A
Asif et al.[2] Virtex-7 19 1036 828 N/A 87 0.73 63 351
Islam et al.[3] Virtex-7 36 N/A  N/A N/A 178 1.48 2630 173
Romel et al.[4] Virtex-7 52 0 N/A 15263 122 0.54 66 476
Arunachalam et al.[5] Virtex-5 33 N/A  N/A N/A 192 121 232 212
Roy et al.[6] Virtex-5 40 0 N/A N/A 43 0.60 26 1667
Asif et al.[7] Virtex-7 97 2799 7452 N/A 73 296 216 1816

8 Throughput is estimated by authors as (Frequency + CC) X 256.
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Power side channel analysis

Power(W)
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Power for two different inputs of SECP256K1
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MSE = 0.001840 => No significant difference
P
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Conclusion

® Temporary registers and parallel operation used to mitigate SCA.

MSE is small, suggesting protection against differential power analysis.

Proposed architecture uses few resources.
® Future: Hardware architecture for a crypto wallet.
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Thank you!
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